中国科学院文献情报制造与材料知识资源中心—领域情报网 Advanced Manufacturing & Materials Information Network, Chinese Academy of Sciences

微信公众号

您当前的位置: 首页 > 资源详情

Paragraf推出全新石墨烯基霍尔效应传感器

编译者:冯瑞华发布时间:2021-3-18点击量:646 来源栏目:科技前沿

3月11日,石墨烯基转换电子传感器领导者Paragraf宣布推出全新石墨烯基霍尔效应传感器,可适用于电池应用,如电动汽车(EV)领域。

石墨烯GHS01AT霍尔效应传感器经优化后可用于低场强和常温环境下。此外,它还可以将磁场测量分辨率提高到与复杂磁传感器的分辨率一样,并采用体积小且易于使用的霍尔传感器,从而可完成常规技术无法提供有效解决方案的监视任务。

新型GHS01AT霍尔效应传感器非常适合电池市场。在电池市场中,该传感器可为研究电池化学衍生物的有效性提供重要价值,并在开发过程形成影响因素。通过使用这些磁传感器,人们可以获得更详细及局部(点对点)的电池单元性能信息。

借助GHS01AT提供的性能参数,可得到详细的实时电流密度(局部电池内部电阻)图,即电池在重复充放循环中不同位置的所有变化。若出现热点,这些区域中的电池内阻的局部图可洞悉热点形成前的物理变化过程。

为实现质量管控,预警信号会在发出时被监控或扫描,而电流密度图可能会突出显示预警信号,甚至提供电池化学特性开发和概念设计所需的信息,防止潜在故障的发生或降低热逃逸风险。此外,该传感器还可用于测量流入和流出电池的电流,可作为测量实时磁场(电流)数据的间接方法,保障电池本身以及电池内部的极耳/母线在测试过程中不被破坏。

平面内杂散磁场通常会对其他传感器的准确性造成严重影响。但该GHS01AT采用石墨烯单层(厚度仅为0.34nm),可不受平面内杂散磁场的影响,且占用空间小,可获得高空间分辨率。

除传感器外,Paragraf还提供GHS阵列入门套件。该紧凑型板可使8个GHS01AT传感器同步测量。每个传感器都由1.5m串行接口电缆与探头连接,并配备Paragraf的可同时进行温度监测和磁测量数据温度校正的温度传感器。这种即插即用的硬件很容易集成到现有的数据采集系统中,将帮助制造商在开始阶段就可应用采用大量GHS01AT器件的大型测试设备。

Paragraf首席执行官Simon Thomas博士表示:“随着安全增加EV续航里程和缩短充电时间的需求不断增多,电池制造商们面临着开发更高性能产品的巨大压力。未来,电池将变得更小、更轻,并具有更高的功率密度和更快的充电响应能力。为此,电池制造商们需要获得可分析的高级测试数据。而随着GHS01AT的推出,电池制造商们可拥有进行分析所必需的技术。”

Thomas博士还表示:“从磁场和空间分辨率两方面来看,GHS01AT性能均优于现有其他设备。这表示,电池制造商将首次可从电流密度角度汇编与产品内部结构有关的综合数据集。通过应用内置GHS01AT传感器的测试台,电池制造商将能延长所生产电池组的寿命并确保安全性。”

来源机构

盖世汽车

原文题目

Paragraf推出全新石墨烯基霍尔效应传感器

提供服务:导出本资源
  1. 1 顶刊封面: 5月材料领域优秀成果十大精选
  2. 2 深圳先进院在放疗增敏纳米药物研发领域取得新进展
  3. 3 俄罗斯研发出热电转换用途新材料
  4. 4 Prodways研发出最新金属3D打印技术——快速增材锻造
  5. 5 长跨度碳纤维建筑材料的新型生产工艺即将诞生
  6. 6 AI持续升温 英特尔/英伟达/谷歌谁会是最终赢家?
  7. 7 IBM-Science:造出世界上最小的碳纳米管晶体管
  8. 8 王中林院士Nature Communications:超高摩擦电荷密度刷新摩擦纳米发电机性能记录 – 材料牛
  9. 9 新3D打印技术可显著增强材料
  10. 10 东南大学研究团队解决分子压电材料世纪难题
  1. 1 最新Nature:可循环再生3D打印光聚合物树脂
  2. 2 北大彭练矛院士、邱晨光团队最新Nature Electronics: 基于二维晶圆的钇掺杂相变欧姆接触工程
  3. 3 宁波材料所在天然海水直接电解制氢研究方面
  4. 4 上海硅酸盐所在宽波段光热调控节能窗研究中取得重要进展
  5. 5 国家纳米科学中心在亚纳米材料普适性制备方面取得新进展
  6. 6 国家纳米科学中心提出筛选抗菌纳米材料的集成方案
  7. 7 国家纳米科学中心在磁性电极无损转移制备高性能自旋电子器件方面取得新进展
  8. 8 国家纳米科学中心在构建高阶DNA折纸结构方面取得新进展
  9. 9 国家纳米科学研究中心在功能氧化物薄膜研究领域取得进展
  10. 10 国家纳米科学中心在有机小分子分离膜和单分子层COF膜方面取得进展

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190