中国科学院文献情报制造与材料知识资源中心—领域情报网 Advanced Manufacturing & Materials Information Network, Chinese Academy of Sciences

微信公众号

您当前的位置: 首页 > 科技前沿

科技前沿共计 3,172 条信息

      全选  导出

1 用国产高性能材料支撑航空梦 2023-12-05

留在美国,还是回国?这是上世纪出国大潮中,出国留学人员要做的一道选择题。1988年,我在美国完成硕士、博士和博士后学业后,选择了回国效力。   我研究的是碳/碳复合材料。什么是碳/碳复合材料?以伊尔-76大型运输机为例,飞机使用的金属基刹车盘重量为2.8吨。如果使用碳/碳复合材料刹车盘,重量只有0.8吨。对零件重量以“克”为计量单位的飞机来说,这是一个革命性的变化。   英、法、美三国先后研制出了高性能碳/碳航空制动材料,碳/碳复合材料也被欧美等发达国家列入了禁止出口清单。改革开放后,我国从欧美进口的大量民航飞机,使用的都是碳/碳复合材料刹车盘。刹车盘是易耗件,大量进口要消耗大量外汇。此外,购买刹车盘时还附有苛刻的条件。   关键核心技术是要不来、买不来、讨不来的,必须靠自主创新。   从上世纪八十年代起,我们就开始了碳/碳复合材料的基础研究。上世纪九十年代末期,我们完成了碳/碳复合材料飞机刹车盘工业化制备,实验室和台架试验的各项指标均符合要求。但是,最后的“终止起飞”项目测试却出现了问题,试验数据不达标。这意味着前面的努力都功亏一篑。   那是我们最困难的黑暗日子,我们几乎弹尽粮绝,甚至有队员还打了退堂鼓。但我坚信努力不会白费,国家的任务我们能完成,也必须完成。创新从来都是九死一生!   都说“十年磨一剑”,可我们整整磨了近二十年。二十年,团队成员从翩翩少年到两鬓斑白,大家把青春和汗水挥洒在了实验室,把最好的年华献给了祖国的材料事业。   最终,我们成功发明了“逆定向流—径向热梯度沉积热解炭技术”,走出了一条与国外完全不同的技术路线,改写了中国民航飞机必须依赖进口刹车盘才能落地的历史,也使我国成为继英、法、美之后,世界上第四个拥有该项制造技术的国家。   今天,我们的成果已经成功助力国产大飞机C919翱翔蓝天,并成为火箭发动机、超高速飞行器的关键材料,还广泛应用在核能、太阳能、化工以及电子等众多领域。   未来,我国还要去研制C929等一系列大飞机。我希望在有生之年能再磨一“剑”,彻底实现大飞机机轮刹车系统“中国造”,助力实现中华民族的伟大航空梦。 查看详细>>

来源: 点击量:174

2 西安交大&华中科大Nat.Commun.:多组元金属间化合物燃料电池催化剂合成新方法 2023-12-05

西安交通大学物理学院杨生春教授团队与华中科技大学姚永刚教授、上海交通大学邬剑波教授合作,在小尺寸、高抗烧结、多组元Pt基金属间化合物燃料电池催化剂制备领域取得重要进展。团队首次提出利用氢化硼烯原位合成多组元Pt基金属间化合物(IMCs)燃料电池催化剂的新策略。 杨生春教授团队在前期研究基础上(ACS Appl Mater&Interfaces,2022;J Mater Chem A,2020)提出了一种利用氢化烯(HB)合成多组元Pt金属间化合物(IMCs)的新方法。该方法将HB的还原性与原位形成的硼(B)纳米片相结合,形成了强金属-载体相互作用(SMSI),从而使催化剂具有更小的尺寸、更高的负载能力和稳定性。实验和理论计算揭示了催化剂中Pt-B键对催化剂的稳定性起到了关键作用,可使Pt纳米颗粒能够在高密度分布条件下仍然保持高度分散,即使在800-1000℃高温热处理过程中也展现出优异的抗烧结性能。此外,该策略还适用于在纳米碳(如碳黑、碳纳米管、石墨烯)和金属氧化物(如Al 2O 3、TiO 2、CeO 2)材料表面制备超小尺寸和高负载量的负载型贵金属催化剂,从而极大拓展了该策略的适用范围。通过Pt-B之间的SMSI效应,团队成功合成了一系列超小尺寸的二元、三元、四元和五元Pt基多组元金属间化合物燃料电池催化剂。与商业催化剂相比,这些i-PtM催化剂表现出更高的催化活性和耐久性。 该成果以“氢化硼烯实现多组元金属间化合物催化剂的合成”(Hydrogenated borophene enabled synthesis of multielement intermetallic catalysts)为题于2023年11月16日在《自然通讯》(Nature Communications)杂志在线发表。西安交通大学物理学院博士生曾晓晓、硕士生景玉丹(已毕业)、博士生高赛赛(已毕业)和上海交通大学博士生张文聪为论文共同第一作者,王斌副教授、华中科技大学姚永刚教授和杨生春教授为论文共同通讯作者,西安交通大学物理学院物质非平衡合成与调控教育部重点实验室为论文第一完成单位。此外,物理学院张杨副教授参与了本论文计算工作,杨生春教授团队梁超研究员、新疆大学季辰辰副教授、上海交通大学邬剑波教授等也深入参与本工作。 查看详细>>

来源:材料人 点击量:213

3 西南交大:二硫化钼功能化稠化剂调制高性能润滑脂 2023-11-24

高速载运装备及其关键运动部件服役过程中经常遭受复杂多变的环境和机械双重作用影响,会诱发严重的磨蚀与腐蚀交互损伤问题。润滑脂因密封防护和润滑功能而受到青睐,用于机械运动部件表面发挥阻隔摩擦副直接接触和润滑功能、阻止腐蚀性介质的浸入等,已经成为大多数机械运动部件的必需品。其中,稠化剂是润滑脂的最基本组分,其结构与属性、与润滑油的感受性决定了润滑脂的胶体/机械/化学/热稳定性、流变学性能等。 前期工作围绕提升润滑脂理化性能和润滑密封功能,筛选了系列二元酸、有机胺及调控摩尔比,通过调制复合皂化过程与稠化剂纤维的组分结构,从而可实现对润滑脂理化性能和摩擦学行为的调控。相关工作发表于Tribology Letters,2020,68:99;Friction,2021,9,1077-1097;Tribology International 2022,173,107643和175,107826;Journal of Industrial and Engineering Chemistry,2022,111,51-63等,系统解析了皂化反应的二元酸、有机胺及其配比对稠化剂结构与稠化效果、以及对润滑脂理化性能与流变学性能的影响规律。 在上述研究基础上,鉴于现用润滑脂需引入多种添加剂才能满足工况服役性能要求,这些添加剂仅仅作为增强相存在于润滑脂的胶体分散体系中,难以与润滑油、稠化剂充分协同而最大限度地发挥其防护功能。 近日,西南交通大学材料服役行为与安全评价研究团队樊小强等故提出了功能化稠化剂的理念。通过原位还原MoS2接枝于凹凸棒制备了功能化的凹凸棒稠化剂(ATP/MoS2),证明了ATP/MoS2稠化剂对润滑脂摩擦学性能的增强作用,并提出了其润滑机理,相关工作发表于专业领域权威期刊Tribology International,2023,179,108135。同时,利用机械应力诱导和硫醇化学导向技术充分利用缺陷S空位和活性Mo原子共轭,成功获得氨基化改性MoS2,并将其引入到皂化过程中,原位构建了一种新型的二硫化钼功能化复合锂皂多元氢键稠化体系,探究了该稠化剂所调制的润滑脂在高剪切速率和长剪切时间下的流变响应行为,揭示了新型稠化剂在摩擦界面二硫化钼的释放规律以及独特纳米结构的摩擦膜形成机制。该文章近日以题为“MoS2 functionalized lithium complex soap with enhanced thickening net structure toward high-performance thickener”发表于国际权威期刊Chemical Engineering Journal,2023,478,147445。 查看详细>>

来源: 点击量:30

4 美国SIA和印度IESA计划成立工作组,加强全球半导体生态系统合作 2023-02-09

根据SIA官方发布,该工作组的具体目标包括制定有关印度半导体生态系统的“准备情况评估”;汇集行业、政府和学术利益相关者,以确定近期的行业机会并促进互补半导体生态系统的长期战略发展;就提升印度在全球半导体价值链(包括芯片制造)中的作用的机遇和挑战提出建议;确定并促进劳动力发展和交流机会,使两国受益。 SIA总裁兼首席执行官John Neuffer表示,印度已经是半导体研究、芯片设计和设备工程的主要枢纽,但其未来潜力更大。该工作组将通过加强美国和印度在全球芯片生态系统中的合作,帮助确定释放这一潜力的切实方法。 IESA总裁兼首席执行官Krishna Moorthy表示,这将是一个重要的平台,汇集全球资源以确定可行的计划,以支持印度增加其在全球芯片行业的影响力,然后实现全球协作以在设计和制造供应链的所有环节执行计划,以及为世界培养半导体人才。 近年来,疫情等原因所引起的“芯片短缺”问题同样困扰着印度,而印度也在逐步加强半导体布局。2022年,印度推出投资额约7600亿卢比的奖励计划,该计划将为半导体、显示器制造及设计业提供支持。 之后,在财政大力支持下,一些企业也涌向印度准备大展身手,比如中国台湾鸿海集团、新加坡IGSS Ventures等。而据印度媒体去年报道,中国台湾鸿海集团与印度韦丹塔(Vedanta)签署了一项195亿美元的投资协议,将在印度古吉拉特邦建立一家半导体工厂。 根据协议,双方将在印度成立合资公司,以投资生产半导体产品为主要目标,出资方面,韦丹塔和鸿海方面分别向新公司出资6成和4成,韦丹塔资源公司将成为合资公司的大股东,并由印度人出任合资公司董事长。另外,双方计划该工厂将于2025年/2026年开始运营,生产基于28纳米工艺的12英寸芯片,该工艺广泛应用于家电、汽车和移动电话。 今年1月,据印度媒体Mint引述当地官员讲话报道,印度政府可能优先批准鸿海和Vedanta集团在当地的晶圆厂建厂案。 另据台媒2月1日消息,业界传印度韦丹塔通过猎头公司大力招募人才,主要集中在面板公司建厂和半导体公司运营。业界推测,Vedanta正招兵买马,或将率先投入与鸿海的合作晶圆厂。 查看详细>>

来源: 点击量:4201

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190