中国科学院文献情报制造与材料知识资源中心—领域情报网 Advanced Manufacturing & Materials Information Network, Chinese Academy of Sciences

微信公众号

您当前的位置: 首页 > 科技前沿

科技前沿共计 3,174 条信息

      全选  导出

1 宁波材料所在天然海水直接电解制氢研究方面 2024-05-22

发展可再生能源电解水制氢技术是实现“碳达峰碳中和”目标的重要途径之一。全球范围海洋可再生能源发展迅猛,至2025年,海上风电装机总量可达到约100 GW。海水电解以低成本(2-3美元/kg H2)的可再生氢制取,有望解决深远海可再生能源消纳需求,原位直接海水电解无需对海水进行处理,有望成为最为行之有效的海水电解技术路线之一。但相对于以副产物形式制备的灰氢与蓝氢,电解海水制绿氢的成本仍居高不下,如果能够有效利用海水中的大量矿产资源,在提矿的同时制绿氢,势必能够大幅度降低绿氢制取成本。但是海水中大量的镁钙离子在氢氧化物被提取出的同时也会附着在阴极表面,阻碍电极与反应物接触,从而导致电极损伤并提高能耗。 近期,中国科学院宁波材料技术与工程研究所氢能与储能实验室陆之毅研究员带领的电化学环境催化团队,基于前期对碱性海水电解的研究(Angew.Chem.Int.Edit.2021,60,22740;Nat.Commun.2023,14,4822;Adv.Mater.2023,2306062;Adv.Funct.Mater.2023,2302263),在天然海水直接电解制氢研究方面取得了新的进展。该团队受前期超疏气电极研究的启发,提出了一种疏固策略,通过提升电极材料表面能进而增加电极表面的吸附水,较完整的水层(氢键网络)使得镁离子难以穿越到电极表面发生非均相成核,这使得电极表面获得了疏固的特性,有效缓解了电极表面的结垢问题。实验结果表明,具有高表面能的镍铜合金电极(NiCu alloy)能够在富含镁钙离子的溶液(10倍海水钙镁离子浓度)中稳定运行超1000小时,并持续产出高纯度、小粒径的氢氧化镁(纯度>99%)。通过理论模拟和实验验证,证实了电极表面的吸附水可有效阻碍镁离子穿越到电极表面发生非均相成核。此外,基于氢气、氢氧化镁双产物经济效益方面的优势,该技术路线相对于传统电解海水制氢,经济效益能够提升约10倍。这项研究解决了天然海水直接电解制氢技术中的重要问题,提出了一条天然海水直接电解制氢的新路线,将大大加快海水提镁制氢技术在工业规模上的商业化进程。 这一工作以”Solidophobic Surface for Electrochemical Extraction of High-Valued Mg(OH)2 Coupled with H2 Production from Seawater”为题发表在国际知名期刊Nano letters上(DOI:10.1021/acs.nanolett.4c01484),论文通讯作者为宁波材料所陆之毅研究员与华东理工大学戴升教授。相关研究得到了国家重点研发计划(2023YFB4005100)的支持。 图1直接海水电解阴极示意图 图2电化学性能与稳定性测试 查看详细>>

来源:宁波材料技术与工程研究所 点击量:6

2 上海硅酸盐所在宽波段光热调控节能窗研究中取得重要进展 2024-05-22

光热调控材料可以在外场(光、热、电、磁)的刺激下动态改变其材料本征结构,进而带来光学特性发生相应改变,如光学吸收,反射与透过等;此外,利用多种材料的优化组合(多层膜、多组分等)或不同维度的规则排列(光子晶体、超表面等)可进一步优化器件的调光能力来实现辐射热的有效管理。 智能节能玻璃需要根据环境温度、太阳辐射的动态变化实现对其自身能量交换能力的动态响应,这种动态响应要求材料能够在很宽的波长范围内实现多种光学状态的智能切换。在前期的研究中,中国科学院上海硅酸盐研究所曹逊研究员团队以VO2材料为基,研究了多种多层膜调控结构(Matter 2019;Matter 2020)和表面微纳超结构(Nature Communications,2022),主要以调节近红外光波段能量为主,同时发展了可见光透明、近红外光强吸收的材料体系(Advanced Energy Materials,2021);接着以WO3材料为基,通过外加电场方式实现可见和近红外双波段区域(太阳辐射)的能量调控(Nature Electronics,2022;Angew.Chem.Inter.Ed.,2023);进一步研究辐射制冷/加热材料可实现中远红外波段能量的调控,并利用辐射制冷与热电等材料耦合还可以有效提升发电效率(Nature Communications,2024)。然而对于窗户而言,除了太阳辐射的调控外,吸收热量后的中远红外发射同等重要,进而才能真正实现整个窗户的辐射热管理,达到最佳节能效果。 近期,上海硅酸盐所曹逊研究员与华中科技大学杨荣贵教授等合作,从优化全波段(可见光、近红外、中远红外)光热交换的角度出发,开发出了一种新型电致变色结构,用于窗户的热管理,能够最大限度地利用可见光和近红外光的太阳辐射以及中红外光的辐射冷却。研究团队提出一种基于VO2和WO3薄膜相变实现三态转变的电致变色器件。在这个结构中,Li+能够在不同的外加电压下分别扩散至单斜相的VO2和WO3层,并完成至四方相的LixVO2和立方相的LiyWO3的相转变。其中,四方相LixVO2具有金属相的特性,其折射率快速升高,导致近红外光透过率的剧烈变化;而LiyWO3由于钨离子的还原表现出对可见光和红外部分的吸收,导致透过率快速下降。这两次相变可以实现三种不同的光学状态,从而独立调节可见光和近红外透射率。值得注意的是,在VO2至LixVO2的相转变中,Li+会陷入较深的势垒中,进而阻止Li+的复合,展现出良好的非易失性,维持该电致变色结构的三种光学状态在4小时以上。 此外,研究团队还发现在不同温度气候下,对智能节能窗户内外侧的发射率往往有不同的要求。在建筑全年热管理过程中,夏季室外环境和窗户表面温度比室内高,为了降低制冷能耗,减少热量进入,需要降低室外经窗户向内辐射热量,因此需要在窗户内侧设置低发射率;冬季室外和窗户表面温度比室内低,为了降低制热能耗,减少热量损失,需要降低室内向窗户辐射热量,同样需要在窗户内侧设置低发射率。此外在电致变色结构往往在着色状态呈现较强的光吸收,在光照下,电致变色结构表面温度相较于传统玻璃往往较高对其使用寿命和循环能力有较大影响,因此需要在外表面设置高发射率。研究团队进一步通过优化电致变色结构外侧(εMIR-O为0.89)和内侧(εMIR-I为0.44)电致变色电极的发射率,将室内外环境之间的辐射热交换最小化。(图1) 热交换模拟和实验研究验证了该模型的普适性和有效性。研究团队在上海市和三亚市进行的户外实验表明,在典型晴朗天气下,与传统商用的Low-e窗户相比,这种基于新型电致变色结构的窗户可实现全天持续冷却,最高温度降幅可达14°C(图2)。模拟显示,这种新的电致变色器件在世界上绝大多数气候区域比商用Low-e玻璃具有更高的节能效果(图3)。该发现为创新的智能节能窗户设计提供了巨大机遇,有助于实现全球碳中和和可持续发展。 相关研究成果以“Tri-band electrochromic smart window for energy savings in buildings”为题发表在Nature Sustainability上。上海硅酸盐所博士毕业生邵泽伟、黄爱彬副研究员和博士生曹翠翠为论文共同第一作者。研究工作得到国家重点研发计划、国家自然科学基金、ANSO国际合作专项、上海市自然科学基金原创探索等项目的资助和支持。 论文链接:https://www.nature.com/articles/s41893-024-01349-z 图1.可见-近红外-中远红外优化的电致变色结构设计。(a)理想的电致变色节能窗户的光谱设计;(b)可见-中远红外优化的电致变色结构;(c)电致变色结构的中远红外发射率性能表征;(d)电致变色结构的可见-中远红外光学性能表征。 图2.户外节能性能测试结果。(a)样品及测试方法照片;(b)不同样品的温度测试实时结果及太阳辐照实时结果;(c)实验样品与Low-e样品的实测温差对比。 图3.热交换模拟节能性能结果。(a)上海市典型天气下不同月份的能耗结果对比;(b)全球典型天气下全能能耗结果实验样品与Low-e玻璃间差值。 查看详细>>

来源:上海硅酸盐研究所 点击量:3

3 用国产高性能材料支撑航空梦 2023-12-05

留在美国,还是回国?这是上世纪出国大潮中,出国留学人员要做的一道选择题。1988年,我在美国完成硕士、博士和博士后学业后,选择了回国效力。   我研究的是碳/碳复合材料。什么是碳/碳复合材料?以伊尔-76大型运输机为例,飞机使用的金属基刹车盘重量为2.8吨。如果使用碳/碳复合材料刹车盘,重量只有0.8吨。对零件重量以“克”为计量单位的飞机来说,这是一个革命性的变化。   英、法、美三国先后研制出了高性能碳/碳航空制动材料,碳/碳复合材料也被欧美等发达国家列入了禁止出口清单。改革开放后,我国从欧美进口的大量民航飞机,使用的都是碳/碳复合材料刹车盘。刹车盘是易耗件,大量进口要消耗大量外汇。此外,购买刹车盘时还附有苛刻的条件。   关键核心技术是要不来、买不来、讨不来的,必须靠自主创新。   从上世纪八十年代起,我们就开始了碳/碳复合材料的基础研究。上世纪九十年代末期,我们完成了碳/碳复合材料飞机刹车盘工业化制备,实验室和台架试验的各项指标均符合要求。但是,最后的“终止起飞”项目测试却出现了问题,试验数据不达标。这意味着前面的努力都功亏一篑。   那是我们最困难的黑暗日子,我们几乎弹尽粮绝,甚至有队员还打了退堂鼓。但我坚信努力不会白费,国家的任务我们能完成,也必须完成。创新从来都是九死一生!   都说“十年磨一剑”,可我们整整磨了近二十年。二十年,团队成员从翩翩少年到两鬓斑白,大家把青春和汗水挥洒在了实验室,把最好的年华献给了祖国的材料事业。   最终,我们成功发明了“逆定向流—径向热梯度沉积热解炭技术”,走出了一条与国外完全不同的技术路线,改写了中国民航飞机必须依赖进口刹车盘才能落地的历史,也使我国成为继英、法、美之后,世界上第四个拥有该项制造技术的国家。   今天,我们的成果已经成功助力国产大飞机C919翱翔蓝天,并成为火箭发动机、超高速飞行器的关键材料,还广泛应用在核能、太阳能、化工以及电子等众多领域。   未来,我国还要去研制C929等一系列大飞机。我希望在有生之年能再磨一“剑”,彻底实现大飞机机轮刹车系统“中国造”,助力实现中华民族的伟大航空梦。 查看详细>>

来源: 点击量:1726

4 西安交大&华中科大Nat.Commun.:多组元金属间化合物燃料电池催化剂合成新方法 2023-12-05

西安交通大学物理学院杨生春教授团队与华中科技大学姚永刚教授、上海交通大学邬剑波教授合作,在小尺寸、高抗烧结、多组元Pt基金属间化合物燃料电池催化剂制备领域取得重要进展。团队首次提出利用氢化硼烯原位合成多组元Pt基金属间化合物(IMCs)燃料电池催化剂的新策略。 杨生春教授团队在前期研究基础上(ACS Appl Mater&Interfaces,2022;J Mater Chem A,2020)提出了一种利用氢化烯(HB)合成多组元Pt金属间化合物(IMCs)的新方法。该方法将HB的还原性与原位形成的硼(B)纳米片相结合,形成了强金属-载体相互作用(SMSI),从而使催化剂具有更小的尺寸、更高的负载能力和稳定性。实验和理论计算揭示了催化剂中Pt-B键对催化剂的稳定性起到了关键作用,可使Pt纳米颗粒能够在高密度分布条件下仍然保持高度分散,即使在800-1000℃高温热处理过程中也展现出优异的抗烧结性能。此外,该策略还适用于在纳米碳(如碳黑、碳纳米管、石墨烯)和金属氧化物(如Al 2O 3、TiO 2、CeO 2)材料表面制备超小尺寸和高负载量的负载型贵金属催化剂,从而极大拓展了该策略的适用范围。通过Pt-B之间的SMSI效应,团队成功合成了一系列超小尺寸的二元、三元、四元和五元Pt基多组元金属间化合物燃料电池催化剂。与商业催化剂相比,这些i-PtM催化剂表现出更高的催化活性和耐久性。 该成果以“氢化硼烯实现多组元金属间化合物催化剂的合成”(Hydrogenated borophene enabled synthesis of multielement intermetallic catalysts)为题于2023年11月16日在《自然通讯》(Nature Communications)杂志在线发表。西安交通大学物理学院博士生曾晓晓、硕士生景玉丹(已毕业)、博士生高赛赛(已毕业)和上海交通大学博士生张文聪为论文共同第一作者,王斌副教授、华中科技大学姚永刚教授和杨生春教授为论文共同通讯作者,西安交通大学物理学院物质非平衡合成与调控教育部重点实验室为论文第一完成单位。此外,物理学院张杨副教授参与了本论文计算工作,杨生春教授团队梁超研究员、新疆大学季辰辰副教授、上海交通大学邬剑波教授等也深入参与本工作。 查看详细>>

来源:材料人 点击量:1775

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190