中国科学院文献情报制造与材料知识资源中心—领域情报网 Advanced Manufacturing & Materials Information Network, Chinese Academy of Sciences

微信公众号

您当前的位置: 首页 > 成员单位动态

成员单位动态共计 524 条信息

      全选  导出

1 国家纳米科学中心提出筛选抗菌纳米材料的集成方案 2024-05-21

高兴发课题组在纳米毒理化学的理论设计方向取得新进展,相关成果以Integrated Computational and Experimental Framework for Inverse Screening of Candidate Antibacterial Nanomedicine(抗菌纳米药物反向筛选的计算与实验集成方案)为题发表在ACS Nano。该工作在课题组近期提出的“催化信号转导理论”(Acc.Chem.Res.2023,56,2366-2377;Adv.Mater.,2023,2211151)的基础上,发展了一套集成了科学计算与3D打印技术的方案,实现了从材料数据库中高效、准确地筛选具有抗菌潜力的纳米材料,并通过湿法实验进行了验证(图1)。该方案可移植性强,能够接入人工智能算法,对医用纳米材料的高通量筛选具有重要意义。 图1.筛选抗菌纳米材料的“计算+实验”集成方案。该方案发展了一种针对材料数据库(Materials Project)的计算机程序,实现了HO吸附能(Eads,OH)的高通量自动计算,利用Eads,OH预测合金纳米材料活化H2O2的催化活性,利用元素共价半径(Rc,mix)预测其细胞毒性,利用3D打印技术进行二次筛选,用湿法化学进行实验验证,最终获得了具有优异抗菌活性的合金纳米材料。 高兴发课题组长期从事纳米毒理化学的基础理论研究,发展相关理论模型及计算机辅助方案,在少量实验或无需实验的条件下预测纳米材料杀死有害细胞、保护正常细胞等生物医学功能,以期缩短相关医用纳米材料的研究周期,节约研究成本。在该研究中,他们基于纳米材料通过表面催化作用活化H2O2,氧化细菌有机质,杀死细菌这一关键化学机制,利用他们之前提出的纳米表面活化H2O2理论模型,预测纳米材料的抗菌活性。同时,他们利用前人提出的纳米材料细胞毒性的定量构效关系(Nano-QSAR)模型,预测材料对正常细胞的安全性,发展了从Materials Project材料库中高通量筛选合金纳米粒子的计算方案。该方案同时考虑了材料活化H2O2的抗菌活性以及对正常细胞的安全性,从而能够筛选出具有高效抗菌活性同时对正常细胞具有较低毒性的抗菌材料。随后,利用扫描探针嵌段共聚物光刻技术(SPBCL)制备出高度均匀的金属/合金纳米颗粒,进行二次实验筛选。计算和实验筛选结果表明AuCu3合金兼具高催化活性和安全性,是一种潜在的抗菌纳米药物,最后通过湿化学方法制备了AuCu3纳米材料,验证了其对正常细胞的安全性和优良的抗菌活性,证明了集成筛选方案的可靠性。相关计算机程序已取得中华人民共和国国家版权局计算机软件著作权登记认证(图2),可访问https://github.com/xingfagao/PyPOD获得。 图2.高通量筛选抗菌合金材料的计算机程序的著作权登记证书。 国家纳米科学中心征甲甲副研究员为该研究工作的第一作者,高兴发研究员为通讯作者,南京大学、湖南大学、南京林业大学的合作者为共同第一作者或共同通讯作者。该工作得到了国家重点研发计划,国家自然科学基金和国家纳米科学中心等项目的资助。 论文链接:https://pubs.acs.org/doi/10.1021/acsnano.3c09128 查看详细>>

来源:国家纳米科学中心 点击量:0

2 国家纳米科学中心在磁性电极无损转移制备高性能自旋电子器件方面取得新进展 2024-05-21

自旋电子器件以高效的方式利用电子自旋进行信息存储、传输和处理,目前已成功应用于电脑硬盘。为了实现性能更加优异、功能更加丰富的自旋电子器件,分子半导体材料凭借其远高于其他材料的自旋寿命而成为近年来自旋电子学领域的研究热点。孙向南课题组长期专注于分子自旋电子器件的研究,目前已在分子半导体材料与自旋特性的构效关系(Angew.Chem.Int.Ed.2023,62,e202213208)、分子自旋电子器件中的界面效应(Adv.Mater.2023,35,2300055)、新型功能性分子自旋电子器件(Science 2017,357,677;Nano Today 2023,49,101763)等方面取得系列研究进展。 近日,孙向南课题组开发了一种聚合物薄膜辅助应变限制无损转移铁磁电极的方法,并成功应用于高性能和高重复性自旋电子器件的构筑。相关成果以Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices为题在线发表于Nature Communications上。 由两个铁磁电极和非磁性中间层组成的垂直三明治结构是自旋电子器件最典型的器件结构。然而,在现有的顶部磁性电极直接沉积过程中,高动能和热能的电极金属原子往往会侵染并损伤非磁性中间层,从而严重影响器件的性能和可重复性。为避免金属电极直接沉积过程带来的界面金属丝渗透和破坏脆弱中间层的问题,出现了电极转移技术。该技术依赖于金属电极的预沉积并将其转移到目标材料上。然而,目前为止无论是湿法还是干法转移技术都面临严重的挑战。湿法转移过程使用的溶剂往往会引入新的杂质,造成额外的散射中心;干法转移过程产生的应变会损伤铁磁电极原本的特性。目前仍然缺少一种无损转移铁磁电极的方法。 最新的研究工作中,孙向南团队通过使用高模量聚合物支撑薄膜将铁磁电极的应变限制在极低水平(<0.025%),以确保在转移过程中铁磁电极的特性得以保持。首先,该工作成功实现了铁磁电极的高质量转移,其微观形貌、电学、磁学等性质在转移前后均保持不变。其次,通过这种无损转移铁磁电极的方法,构建了界面均匀且无侵染的自旋电子器件,降低了界面处的自旋相关散射,提高了器件的性能和可重复性。此外,该方法还具有普适性,能够适用于包含不同类型材料和结构的器件,为构建高质量的半导体器件提供了一种新的途径,同时还展现了在大面积器件阵列中的潜在应用。 该研究工作由国家纳米科学中心孙向南研究团队主导,国家纳米科学中心副研究员郭立丹、特别研究助理谷现荣、博士研究生胡顺华为文章的共同第一作者,国家纳米科学中心孙向南研究员和山东大学秦伟教授为通讯作者。该研究成果得到了国家自然科学基金项目和中国科学院战略性先导科技专项B类等项目的资助。  图.铁磁电极无损转移制备自旋电子器件的步骤示意图 原文链接:https://doi.org/10.1038/s41467-024-45200-7 查看详细>>

来源:国家纳米科学中心 点击量:0

3 国家纳米科学中心在构建高阶DNA折纸结构方面取得新进展 2024-05-21

国家纳米科学中心丁宝全研究员与亚利桑那州立大学颜颢教授团队合作,在构建支链核酸用于引导DNA折纸结构进行精确共组装方面取得重要进展。研究成果以Chemically Conjugated Branched Staples for Super-DNA Origami为题,发表在J.Am.Chem.Soc.杂志上(DOI:10.1021/jacs.3c13331)。 DNA折纸作为一类具有代表性的核酸纳米结构,在构建精细的纳米器件和智能的药物递送系统等方面发挥了重要作用。DNA折纸结构通常由一条长的脚手架链和上百条短的订书钉链退火共组装而成。然而,由于常用的脚手架链的核酸序列长度有限,DNA折纸结构的尺寸被严重限制。丁宝全研究员团队在前期研究中发现,经共价偶联所制备的支链核酸结构具有非常高的热稳定性,有望作为构建高阶DNA折纸结构的连接枢纽(CCS Chem.2023,5,2125;J.Am.Chem.Soc.2021,143,19893;Angew.Chem.Int.Ed.2021,60,1853;J.Am.Chem.Soc.2019,141,19032)。   图.利用共价偶联的支状订书钉链组装高阶DNA折纸结构 在前期研究的基础上,该团队提出通过构建支状订书钉链来组装高阶DNA折纸结构的概念。首先,将线型订书钉链共价偶联成支状订书钉链,并将其直接引入到DNA折纸结构组装体系中,相对于传统的两步组装体系(产率<10%),可一步制备得到尺寸可控且产率高达80%以上的高阶DNA折纸结构。随后,通过设计具有不同订书钉序列的杂合型支状订书钉链,经多级次组装,可获得形貌各异的杂合型高阶DNA折纸结构。最后,在支状订书钉链的桥联作用下,可高效得到微米尺度的含有100个DNA折纸结构单元的10×10高阶DNA折纸阵列。该类尺寸形状可控的高阶DNA折纸阵列仍然具有非常好的纳米级位点可寻址性,可作为高清模板呈现出预先设计的纳米图案。该研究利用共价偶联的支链核酸结构为连接枢纽,充分展示了核酸结构的精确共组装能力,实现了对各类高阶DNA折纸结构的高效制备,为大尺寸核酸纳米结构的构建和功能化提供了新的研究策略。 国家纳米科学中心与郑州大学联合培养的硕士毕业生王宇昂、国家纳米科学中心特别研究助理王洪和国家纳米科学中心与吉林大学联合培养的博士毕业生李燕为本文的共同第一作者。国家纳米科学中心丁宝全研究员、刘建兵副研究员和亚利桑那州立大学颜颢教授为共同通讯作者。该研究得到了国家重点研发计划、国家自然科学基金、北京市科技新星计划和中国科学院青年创新促进会等项目的支持。     论文链接:https://pubs.acs.org/doi/10.1021/jacs.3c13331 查看详细>>

来源:国家纳米科学中心 点击量:0

4 国家纳米科学研究中心在功能氧化物薄膜研究领域取得进展 2024-05-21

    国家纳米科学中心郑强课题组与清华大学材料学院李千课题组等合作,在功能氧化物薄膜电畴翻转微结构表征与光电性能调控领域取得系列研究进展。相关成果以Giant electric field-induced second harmonic generation in polar skyrmions和Tuning the electro-optic properties of BaTiO3 epitaxial thin films via buffer layer-controlled polarization rotation paths为题,分别在线发表于《自然·通讯》(Nature Communications 2024, DOI:10.1038/s41467-024-45755-5)和《先进功能材料》(Advanced Functional Materials 2024, DOI:10.1002/adfm.202315579)上。     近年来,电光调制器、频率梳、量子光源等新兴集成光子学器件的高速发展,对集成光子器件中的关键材料在性能和调制方面提出了更高的要求。多功能氧化物薄膜体系为光、电、磁等外场调控提供了良好平台,研究其内部电畴翻转、晶格畸变等微结构变化特征,并阐明这些微结构与光电性能之间的关联机制,对于实现功能氧化物薄膜宏观光电性能的调控至关重要。配有球差校正器的扫描透射电子显微学(scanning transmission electron microscopy,STEM)先进技术能在亚埃米尺度上精准探测畴结构、局域晶格和电子结构变化特征,为深入研究功能氧化物薄膜中极性斯格明子有序化、铁电极化翻转以及光电响应关系提供关键信息。     国家纳米科学中心郑强团队与清华大学李千团队、浙江大学洪子健团队合作,对具有高度有序化极性斯格明子的PbTiO3/SrTiO3超晶格薄膜进行了电镜显微表征和相场理论模拟研究,深入阐明了极性斯格明子电场诱导二次谐波产生(EFISH)效应的微观机制。该研究利用球差校正STEM的高角度环形暗场像(HAADF)定量获取原子尺度极性位移信息,并通过差分相位衬度(DPC)成像模式半定量地提取局部电场信息,证实了高质量的PbTiO3/SrTiO3超晶格薄膜中存在有序化的极性斯格明子(图1)。进一步的STEM原位电学实验以及理论模拟结果揭示了极性斯格明子在不同方向外加电场作用下迥异的变化过程,厘清了其晶体结构、极化构型和光学二次谐波产生(SHG)响应之间的关联性,对新型非线性集成光子学材料平台的实空间可视化表征及性能调控具有重要意义。     上述研究中,郑强研究员与清华大学材料学院李千副教授、浙江大学洪子健研究员为论文的通讯作者,清华大学材料学院2020级博士生王思旭、2021级博士生李为为论文的共同第一作者,国家纳米科学中心科研助理高汉滨为本文合作作者。论文的重要合作者还包括清华大学材料学院南策文院士、李敬锋教授、上海同步辐射光源李晓龙研究员、美国威斯康星大学麦迪逊分校Paul G.Evans教授等。原文链接:https://doi.org/10.1038/s41467-024-45755-5     此外,郑强团队与李千团队在另一项针对BaTiO3薄膜领域的合作研究中,利用STEM原子尺度定量分析技术发现,借助GdScO3缓冲层可在BaTiO3薄膜中实现逐渐过渡的极化旋转路径,并通过调控缓冲层厚度可获得一系列不同相结构的BaTiO3薄膜(图2)。随着缓冲层厚度的增加,薄膜相结构从面外四方相过渡至中间菱方相,并最终稳定为面内四方相。同时,基于STEM图像的几何相位分析(GPA)表明,这种结构调控策略的有效性源于GdScO3缓冲层的慢应变释放方式。该工作通过对系列样品的实空间表征和分析,对BaTiO3薄膜电光响应背后的畴翻转动力学进行了系统解析,为高性能电光材料和集成光子器件的设计提供了有效方案。郑强研究员与清华大学材料学院李千副教授、李敬锋教授、邓晨光博士后为论文的通讯作者,清华大学材料学院2023级博士生于涵、国家纳米科学中心2021级直博生郭宁、清华大学材料学院邓晨光博士后为论文的共同第一作者。论文的重要合作者还包括清华大学马静副教授,北京师范大学张金星教授等。原文链接:https://doi.org/10.1002/adfm.202315579     国家纳米科学中心的双球差校正透射电子显微镜在以上两项研究工作中均发挥了重要作用。郑强团队通过改进硬件和数据采集方式,编写相关数据处理算法,在该电子显微镜上实现了同步分析原子尺度电场/电荷分布和晶格结构的皮米级变化。这些技术改良是定量表征上述两类功能氧化物薄膜原子尺度极化特征、重构局域电场分布并建立两者之间关联性的关键。   图1.具有有序化极性斯格明子的PbTiO3/SrTiO3超晶格的结构特征及基于STEM的电场重构   图2.不同GdScO3缓冲层厚度的BaTiO3薄膜STEM表征结果 查看详细>>

来源:国家纳米科学中心 点击量:0

版权所有@2017中国科学院文献情报中心

制作维护:中国科学院文献情报中心信息系统部地址:北京中关村北四环西路33号邮政编号:100190